Transaction: 73423d82f74c170e8728a918b47c2ad94f4eac7d

Included in block 24,385,199 at 2018/07/22 01:15:18 (UTC).

Transaction overview

Loading...
Transaction info
transaction_id 73423d82f74c170e8728a918b47c2ad94f4eac7d
ref_block_num 5,789
block_num24,385,199
ref_block_prefix 1,371,425,583
expiration2018/07/22T01:25:12
transaction_num 13
extensions[]
signatures 1f522443acae5088dbeb72e79601575a4b5faaaadd82a352a5c037ac6c3c8076e649b6688b2f1e1cbec40dd66080e182490aa32041e552aded456585c2077b1117
operations
comment
"parent_author":"dailyxkcd",<br>"parent_permlink":"re-the-children-s-prison-parents-labor-pool-development-20180721t033505",<br>"author":"stratus",<br>"permlink":"re-dailyxkcd-re-the-children-s-prison-parents-labor-pool-development-20180721t033505-20180721t162812060z",<br>"title":"",<br>"body":"@@ -2691,<br>36 +2691,<br>1718 @@\n e.%0A%0A\n-https:\/\/youtu.be\/8WEtxJ4-sh4\n+%5BPick's Theorem%5D(https:\/\/www.cut-the-knot.org\/ctk\/Pick_proof.shtml) is a useful method for determining the area of any polygon whose vertices are points on a lattice,<br> a regularly spaced array of points%0A%0AOn Musical Self-similarity: Intersemiosis as Synecdoche and Analogy%0ABy Gabriel Pareyon%0A%0Ahttps:\/\/youtu.be\/8WEtxJ4-sh4%0A%5BWhat is the shoelace method?%5D(https:\/\/artofproblemsolving.com\/wiki\/index.php?title=Shoelace_Theorem)%0A%0AThe shoelace formula or shoelace algorithm (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. ... It has applications in surveying and forestry,<br> among other areas.%0A%0AIn mathematics,<br> specifically bifurcation theory,<br> the %5BFeigenbaum constants%5D(https:\/\/en.wikipedia.org\/wiki\/Feigenbaum_constants) are two mathematical constants which both express ratios in a bifurcation diagram for a non-linear map. They are named after the mathematician Mitchell Feigenbaum.%0A%0AIn mathematics,<br> the %5BFarey sequence%5D(https:\/\/en.wikipedia.org\/wiki\/Farey_sequence) of order n is the sequence of completely reduced fractions between 0 and 1 which when in lowest terms have denominators less than or equal to n,<br> arranged in order of increasing size.%0A%0AWhat is Ptolemy's Theorem?%0A%0AIn Euclidean geometry,<br> Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus).%0A%0A%5BTHE FIBONACCI SEQUENCE,<br> SPIRALS AND THE GOLDEN MEAN%5D(https:\/\/math.temple.edu\/~reich\/Fib\/fibo.html)%0A\n %0Ahtt\n",<br>"json_metadata":" \"tags\":[\"childrens\" ,<br>\"image\":[\"https:\/\/s22.postimg.cc\/3qf2itlht\/wave-1443249_960_720.jpg\",<br>\"https:\/\/s22.postimg.cc\/nxsib6o4x\/0945477c7b16d65f05a61b9b03238c7e.jpg\",<br>\"https:\/\/s22.postimg.cc\/ke6klk8m9\/images.jpg\",<br>\"https:\/\/s22.postimg.cc\/3u8vyzyo1\/i-212155080e252f1d86a9c9a81bff7bf1-hgfractal.jpg\",<br>\"https:\/\/s22.postimg.cc\/ftke68jnl\/Fern_Fractal_2_M-624x414.png\",<br>\"https:\/\/img.youtube.com\/vi\/8WEtxJ4-sh4\/0.jpg\",<br>\"https:\/\/s22.postimg.cc\/44geibq4x\/b55ed8cd7a6874c0250292bf6c01b16c.jpg\",<br>\"https:\/\/img.youtube.com\/vi\/WDm9JSOY_YI\/0.jpg\",<br>\"https:\/\/s22.postimg.cc\/77lpzqckh\/do-it-for-her-2-24961-1445989607-5_dblbig.jpg\",<br>\"https:\/\/img.youtube.com\/vi\/4CvFly6l-cQ\/0.jpg\" ,<br>\"links\":[\"http:\/\/adsabs.harvard.edu\/abs\/1968WRR.....4..909M\",<br>\"http:\/\/drawingwithnumbers.artisart.org\/building-life-in-tableau-by-noah-salvaterra\/\",<br>\"https:\/\/en.wikipedia.org\/wiki\/Manvantara\",<br>\"http:\/\/www.funnyordie.com\/between_two_ferns\",<br>\"https:\/\/www.cut-the-knot.org\/ctk\/Pick_proof.shtml\",<br>\"https:\/\/youtu.be\/8WEtxJ4-sh4\",<br>\"https:\/\/artofproblemsolving.com\/wiki\/index.php?title=Shoelace_Theorem\",<br>\"https:\/\/en.wikipedia.org\/wiki\/Feigenbaum_constants\",<br>\"https:\/\/en.wikipedia.org\/wiki\/Farey_sequence\",<br>\"https:\/\/math.temple.edu\/~reich\/Fib\/fibo.html\",<br>\"https:\/\/momath.org\/home\/fibonacci-numbers-of-sunflower-seed-spirals\/\",<br>\"https:\/\/youtu.be\/WDm9JSOY_YI\",<br>\"https:\/\/users.math.yale.edu\/public_html\/People\/frame\/Fractals\/Panorama\/SocialSciences\/PrisDil\/PrisDil.html\",<br>\"https:\/\/youtu.be\/4CvFly6l-cQ\" ,<br>\"app\":\"steemit\/0.1\" "
* The API used to generate this page is provided by @steemchiller.